This repository has been archived on 2024-01-19. You can view files and clone it, but cannot push or open issues or pull requests.
epubreader/public/bitjs/archive/unrar.js

3066 lines
86 KiB
JavaScript
Raw Normal View History

2020-04-21 20:37:42 +00:00
/**
* unrar.js
*
* Licensed under the MIT License
*
* Copyright(c) 2011 Google Inc.
* Copyright(c) 2011 antimatter15
*/
// This file expects to be invoked as a Worker (see onmessage below).
//importScripts('../io/bitstream.js');
/*
* bitstream.js
*
* Provides readers for bitstreams.
*
* Licensed under the MIT License
*
* Copyright(c) 2011 Google Inc.
* Copyright(c) 2011 antimatter15
*/
var bitjs = bitjs || {};
bitjs.io = bitjs.io || {};
/**
* This bit stream peeks and consumes bits out of a binary stream.
*/
bitjs.io.BitStream = class {
/**
* @param {ArrayBuffer} ab An ArrayBuffer object or a Uint8Array.
* @param {boolean} rtl Whether the stream reads bits from the byte starting
* from bit 7 to 0 (true) or bit 0 to 7 (false).
* @param {Number} opt_offset The offset into the ArrayBuffer
* @param {Number} opt_length The length of this BitStream
*/
constructor(ab, rtl, opt_offset, opt_length) {
if (!ab || !ab.toString || ab.toString() !== "[object ArrayBuffer]") {
throw "Error! BitArray constructed with an invalid ArrayBuffer object";
}
const offset = opt_offset || 0;
const length = opt_length || ab.byteLength;
this.bytes = new Uint8Array(ab, offset, length);
this.bytePtr = 0; // tracks which byte we are on
this.bitPtr = 0; // tracks which bit we are on (can have values 0 through 7)
this.peekBits = rtl ? this.peekBits_rtl : this.peekBits_ltr;
}
/**
* byte0 byte1 byte2 byte3
* 7......0 | 7......0 | 7......0 | 7......0
*
* The bit pointer starts at bit0 of byte0 and moves left until it reaches
* bit7 of byte0, then jumps to bit0 of byte1, etc.
* @param {number} n The number of bits to peek.
* @param {boolean=} movePointers Whether to move the pointer, defaults false.
* @return {number} The peeked bits, as an unsigned number.
*/
peekBits_ltr(n, opt_movePointers) {
if (n <= 0 || typeof n != typeof 1) {
return 0;
}
const movePointers = opt_movePointers || false;
const bytes = this.bytes;
let bytePtr = this.bytePtr;
let bitPtr = this.bitPtr;
let result = 0;
let bitsIn = 0;
// keep going until we have no more bits left to peek at
// TODO: Consider putting all bits from bytes we will need into a variable and then
// shifting/masking it to just extract the bits we want.
// This could be considerably faster when reading more than 3 or 4 bits at a time.
while (n > 0) {
if (bytePtr >= bytes.length) {
throw "Error! Overflowed the bit stream! n=" + n + ", bytePtr=" + bytePtr + ", bytes.length=" +
bytes.length + ", bitPtr=" + bitPtr;
return -1;
}
const numBitsLeftInThisByte = (8 - bitPtr);
if (n >= numBitsLeftInThisByte) {
const mask = (bitjs.io.BitStream.BITMASK[numBitsLeftInThisByte] << bitPtr);
result |= (((bytes[bytePtr] & mask) >> bitPtr) << bitsIn);
bytePtr++;
bitPtr = 0;
bitsIn += numBitsLeftInThisByte;
n -= numBitsLeftInThisByte;
}
else {
const mask = (bitjs.io.BitStream.BITMASK[n] << bitPtr);
result |= (((bytes[bytePtr] & mask) >> bitPtr) << bitsIn);
bitPtr += n;
bitsIn += n;
n = 0;
}
}
if (movePointers) {
this.bitPtr = bitPtr;
this.bytePtr = bytePtr;
}
return result;
}
/**
* byte0 byte1 byte2 byte3
* 7......0 | 7......0 | 7......0 | 7......0
*
* The bit pointer starts at bit7 of byte0 and moves right until it reaches
* bit0 of byte0, then goes to bit7 of byte1, etc.
* @param {number} n The number of bits to peek.
* @param {boolean=} movePointers Whether to move the pointer, defaults false.
* @return {number} The peeked bits, as an unsigned number.
*/
peekBits_rtl(n, opt_movePointers) {
if (n <= 0 || typeof n != typeof 1) {
return 0;
}
const movePointers = opt_movePointers || false;
const bytes = this.bytes;
let bytePtr = this.bytePtr;
let bitPtr = this.bitPtr;
let result = 0;
// keep going until we have no more bits left to peek at
// TODO: Consider putting all bits from bytes we will need into a variable and then
// shifting/masking it to just extract the bits we want.
// This could be considerably faster when reading more than 3 or 4 bits at a time.
while (n > 0) {
if (bytePtr >= bytes.length) {
throw "Error! Overflowed the bit stream! n=" + n + ", bytePtr=" + bytePtr + ", bytes.length=" +
bytes.length + ", bitPtr=" + bitPtr;
return -1;
}
const numBitsLeftInThisByte = (8 - bitPtr);
if (n >= numBitsLeftInThisByte) {
result <<= numBitsLeftInThisByte;
result |= (bitjs.io.BitStream.BITMASK[numBitsLeftInThisByte] & bytes[bytePtr]);
bytePtr++;
bitPtr = 0;
n -= numBitsLeftInThisByte;
}
else {
result <<= n;
result |= ((bytes[bytePtr] & (bitjs.io.BitStream.BITMASK[n] << (8 - n - bitPtr))) >> (8 - n - bitPtr));
bitPtr += n;
n = 0;
}
}
if (movePointers) {
this.bitPtr = bitPtr;
this.bytePtr = bytePtr;
}
return result;
}
/**
* Peek at 16 bits from current position in the buffer.
* Bit at (bytePtr,bitPtr) has the highest position in returning data.
* Taken from getbits.hpp in unrar.
* TODO: Move this out of BitStream and into unrar.
*/
getBits() {
return (((((this.bytes[this.bytePtr] & 0xff) << 16) +
((this.bytes[this.bytePtr+1] & 0xff) << 8) +
((this.bytes[this.bytePtr+2] & 0xff))) >>> (8-this.bitPtr)) & 0xffff);
}
/**
* Reads n bits out of the stream, consuming them (moving the bit pointer).
* @param {number} n The number of bits to read.
* @return {number} The read bits, as an unsigned number.
*/
readBits(n) {
return this.peekBits(n, true);
}
/**
* This returns n bytes as a sub-array, advancing the pointer if movePointers
* is true. Only use this for uncompressed blocks as this throws away remaining
* bits in the current byte.
* @param {number} n The number of bytes to peek.
* @param {boolean=} movePointers Whether to move the pointer, defaults false.
* @return {Uint8Array} The subarray.
*/
peekBytes(n, opt_movePointers) {
if (n <= 0 || typeof n != typeof 1) {
return 0;
}
// from http://tools.ietf.org/html/rfc1951#page-11
// "Any bits of input up to the next byte boundary are ignored."
while (this.bitPtr != 0) {
this.readBits(1);
}
const movePointers = opt_movePointers || false;
let bytePtr = this.bytePtr;
let bitPtr = this.bitPtr;
const result = this.bytes.subarray(bytePtr, bytePtr + n);
if (movePointers) {
this.bytePtr += n;
}
return result;
}
/**
* @param {number} n The number of bytes to read.
* @return {Uint8Array} The subarray.
*/
readBytes(n) {
return this.peekBytes(n, true);
}
}
// mask for getting N number of bits (0-8)
bitjs.io.BitStream.BITMASK = [0, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F, 0xFF ];
//importScripts('../io/bytebuffer.js');
/*
* bytestream.js
*
* Provides a writer for bytes.
*
* Licensed under the MIT License
*
* Copyright(c) 2011 Google Inc.
* Copyright(c) 2011 antimatter15
*/
var bitjs = bitjs || {};
bitjs.io = bitjs.io || {};
/**
* A write-only Byte buffer which uses a Uint8 Typed Array as a backing store.
*/
bitjs.io.ByteBuffer = class {
/**
* @param {number} numBytes The number of bytes to allocate.
*/
constructor(numBytes) {
if (typeof numBytes != typeof 1 || numBytes <= 0) {
throw "Error! ByteBuffer initialized with '" + numBytes + "'";
}
this.data = new Uint8Array(numBytes);
this.ptr = 0;
}
/**
* @param {number} b The byte to insert.
*/
insertByte(b) {
// TODO: throw if byte is invalid?
this.data[this.ptr++] = b;
}
/**
* @param {Array.<number>|Uint8Array|Int8Array} bytes The bytes to insert.
*/
insertBytes(bytes) {
// TODO: throw if bytes is invalid?
this.data.set(bytes, this.ptr);
this.ptr += bytes.length;
}
/**
* Writes an unsigned number into the next n bytes. If the number is too large
* to fit into n bytes or is negative, an error is thrown.
* @param {number} num The unsigned number to write.
* @param {number} numBytes The number of bytes to write the number into.
*/
writeNumber(num, numBytes) {
if (numBytes < 1) {
throw 'Trying to write into too few bytes: ' + numBytes;
}
if (num < 0) {
throw 'Trying to write a negative number (' + num +
') as an unsigned number to an ArrayBuffer';
}
if (num > (Math.pow(2, numBytes * 8) - 1)) {
throw 'Trying to write ' + num + ' into only ' + numBytes + ' bytes';
}
// Roll 8-bits at a time into an array of bytes.
const bytes = [];
while (numBytes-- > 0) {
const eightBits = num & 255;
bytes.push(eightBits);
num >>= 8;
}
this.insertBytes(bytes);
}
/**
* Writes a signed number into the next n bytes. If the number is too large
* to fit into n bytes, an error is thrown.
* @param {number} num The signed number to write.
* @param {number} numBytes The number of bytes to write the number into.
*/
writeSignedNumber(num, numBytes) {
if (numBytes < 1) {
throw 'Trying to write into too few bytes: ' + numBytes;
}
const HALF = Math.pow(2, (numBytes * 8) - 1);
if (num >= HALF || num < -HALF) {
throw 'Trying to write ' + num + ' into only ' + numBytes + ' bytes';
}
// Roll 8-bits at a time into an array of bytes.
const bytes = [];
while (numBytes-- > 0) {
const eightBits = num & 255;
bytes.push(eightBits);
num >>= 8;
}
this.insertBytes(bytes);
}
/**
* @param {string} str The ASCII string to write.
*/
writeASCIIString(str) {
for (let i = 0; i < str.length; ++i) {
const curByte = str.charCodeAt(i);
if (curByte < 0 || curByte > 255) {
throw 'Trying to write a non-ASCII string!';
}
this.insertByte(curByte);
}
};
}
//importScripts('archive.js');
/**
* archive.js
*
* Provides base functionality for unarchiving.
*
* Licensed under the MIT License
*
* Copyright(c) 2011 Google Inc.
*/
var bitjs = bitjs || {};
bitjs.archive = bitjs.archive || {};
/**
* An unarchive event.
*/
bitjs.archive.UnarchiveEvent = class {
/**
* @param {string} type The event type.
*/
constructor(type) {
/**
* The event type.
* @type {string}
*/
this.type = type;
}
}
/**
* The UnarchiveEvent types.
*/
bitjs.archive.UnarchiveEvent.Type = {
START: 'start',
PROGRESS: 'progress',
EXTRACT: 'extract',
FINISH: 'finish',
INFO: 'info',
ERROR: 'error'
};
/**
* Useful for passing info up to the client (for debugging).
*/
bitjs.archive.UnarchiveInfoEvent = class extends bitjs.archive.UnarchiveEvent {
/**
* @param {string} msg The info message.
*/
constructor(msg) {
super(bitjs.archive.UnarchiveEvent.Type.INFO);
/**
* The information message.
* @type {string}
*/
this.msg = msg;
}
}
/**
* An unrecoverable error has occured.
*/
bitjs.archive.UnarchiveErrorEvent = class extends bitjs.archive.UnarchiveEvent {
/**
* @param {string} msg The error message.
*/
constructor(msg) {
super(bitjs.archive.UnarchiveEvent.Type.ERROR);
/**
* The information message.
* @type {string}
*/
this.msg = msg;
}
}
/**
* Start event.
*/
bitjs.archive.UnarchiveStartEvent = class extends bitjs.archive.UnarchiveEvent {
constructor() {
super(bitjs.archive.UnarchiveEvent.Type.START);
}
}
/**
* Finish event.
*/
bitjs.archive.UnarchiveFinishEvent = class extends bitjs.archive.UnarchiveEvent {
constructor() {
super(bitjs.archive.UnarchiveEvent.Type.FINISH);
}
}
/**
* Progress event.
*/
bitjs.archive.UnarchiveProgressEvent = class extends bitjs.archive.UnarchiveEvent {
/**
* @param {string} currentFilename
* @param {number} currentFileNumber
* @param {number} currentBytesUnarchivedInFile
* @param {number} currentBytesUnarchived
* @param {number} totalUncompressedBytesInArchive
* @param {number} totalFilesInArchive
*/
constructor(currentFilename, currentFileNumber, currentBytesUnarchivedInFile,
currentBytesUnarchived, totalUncompressedBytesInArchive, totalFilesInArchive) {
super(bitjs.archive.UnarchiveEvent.Type.PROGRESS);
this.currentFilename = currentFilename;
this.currentFileNumber = currentFileNumber;
this.currentBytesUnarchivedInFile = currentBytesUnarchivedInFile;
this.totalFilesInArchive = totalFilesInArchive;
this.currentBytesUnarchived = currentBytesUnarchived;
this.totalUncompressedBytesInArchive = totalUncompressedBytesInArchive;
}
}
/**
* Extract event.
*/
bitjs.archive.UnarchiveExtractEvent = class extends bitjs.archive.UnarchiveEvent {
/**
* @param {UnarchivedFile} unarchivedFile
*/
constructor(unarchivedFile) {
super(bitjs.archive.UnarchiveEvent.Type.EXTRACT);
/**
* @type {UnarchivedFile}
*/
this.unarchivedFile = unarchivedFile;
}
}
/**
* All extracted files returned by an Unarchiver will implement
* the following interface:
*
* interface UnarchivedFile {
* string filename
* TypedArray fileData
* }
*
*/
/**
* Base class for all Unarchivers.
*/
bitjs.archive.Unarchiver = class {
/**
* @param {ArrayBuffer} arrayBuffer The Array Buffer.
* @param {string} opt_pathToBitJS Optional string for where the BitJS files are located.
*/
constructor(arrayBuffer, opt_pathToBitJS) {
/**
* The ArrayBuffer object.
* @type {ArrayBuffer}
* @protected
*/
this.ab = arrayBuffer;
/**
* The path to the BitJS files.
* @type {string}
* @private
*/
this.pathToBitJS_ = opt_pathToBitJS || '/';
/**
* A map from event type to an array of listeners.
* @type {Map.<string, Array>}
*/
this.listeners_ = {};
for (let type in bitjs.archive.UnarchiveEvent.Type) {
this.listeners_[bitjs.archive.UnarchiveEvent.Type[type]] = [];
}
/**
* Private web worker initialized during start().
* @type {Worker}
* @private
*/
this.worker_ = null;
}
/**
* This method must be overridden by the subclass to return the script filename.
* @return {string} The script filename.
* @protected.
*/
getScriptFileName() {
throw 'Subclasses of AbstractUnarchiver must overload getScriptFileName()';
}
/**
* Adds an event listener for UnarchiveEvents.
*
* @param {string} Event type.
* @param {function} An event handler function.
*/
addEventListener(type, listener) {
if (type in this.listeners_) {
if (this.listeners_[type].indexOf(listener) == -1) {
this.listeners_[type].push(listener);
}
}
}
/**
* Removes an event listener.
*
* @param {string} Event type.
* @param {EventListener|function} An event listener or handler function.
*/
removeEventListener(type, listener) {
if (type in this.listeners_) {
const index = this.listeners_[type].indexOf(listener);
if (index != -1) {
this.listeners_[type].splice(index, 1);
}
}
}
/**
* Receive an event and pass it to the listener functions.
*
* @param {bitjs.archive.UnarchiveEvent} e
* @private
*/
handleWorkerEvent_(e) {
if ((e instanceof bitjs.archive.UnarchiveEvent || e.type) &&
this.listeners_[e.type] instanceof Array) {
this.listeners_[e.type].forEach(function (listener) { listener(e) });
if (e.type == bitjs.archive.UnarchiveEvent.Type.FINISH) {
this.worker_.terminate();
}
} else {
console.log(e);
}
}
/**
* Starts the unarchive in a separate Web Worker thread and returns immediately.
*/
start() {
const me = this;
const scriptFileName = this.pathToBitJS_ + this.getScriptFileName();
if (scriptFileName) {
this.worker_ = new Worker(scriptFileName);
this.worker_.onerror = function(e) {
console.log('Worker error: message = ' + e.message);
throw e;
};
this.worker_.onmessage = function(e) {
if (typeof e.data == 'string') {
// Just log any strings the workers pump our way.
console.log(e.data);
} else {
// Assume that it is an UnarchiveEvent. Some browsers preserve the 'type'
// so that instanceof UnarchiveEvent returns true, but others do not.
me.handleWorkerEvent_(e.data);
}
};
this.worker_.postMessage({file: this.ab});
}
}
/**
* Terminates the Web Worker for this Unarchiver and returns immediately.
*/
stop() {
if (this.worker_) {
this.worker_.terminate();
}
}
}
/**
* Unzipper
*/
bitjs.archive.Unzipper = class extends bitjs.archive.Unarchiver {
constructor(arrayBuffer, opt_pathToBitJS) {
super(arrayBuffer, opt_pathToBitJS);
}
getScriptFileName() { return 'archive/unzip.js'; }
}
/**
* Unrarrer
*/
bitjs.archive.Unrarrer = class extends bitjs.archive.Unarchiver {
constructor(arrayBuffer, opt_pathToBitJS) {
super(arrayBuffer, opt_pathToBitJS);
}
getScriptFileName() { return 'archive/unrar.js'; }
}
/**
* Untarrer
* @extends {bitjs.archive.Unarchiver}
* @constructor
*/
bitjs.archive.Untarrer = class extends bitjs.archive.Unarchiver {
constructor(arrayBuffer, opt_pathToBitJS) {
super(arrayBuffer, opt_pathToBitJS);
}
getScriptFileName() { return 'archive/untar.js'; };
}
/**
* Factory method that creates an unarchiver based on the byte signature found
* in the arrayBuffer.
* @param {ArrayBuffer} ab
* @param {string=} opt_pathToBitJS Path to the unarchiver script files.
* @return {bitjs.archive.Unarchiver}
*/
bitjs.archive.GetUnarchiver = function(ab, opt_pathToBitJS) {
let unarchiver = null;
const pathToBitJS = opt_pathToBitJS || '';
const h = new Uint8Array(ab, 0, 10);
if (h[0] == 0x52 && h[1] == 0x61 && h[2] == 0x72 && h[3] == 0x21) { // Rar!
unarchiver = new bitjs.archive.Unrarrer(ab, pathToBitJS);
} else if (h[0] == 0x50 && h[1] == 0x4B) { // PK (Zip)
unarchiver = new bitjs.archive.Unzipper(ab, pathToBitJS);
} else { // Try with tar
unarchiver = new bitjs.archive.Untarrer(ab, pathToBitJS);
}
return unarchiver;
};
//importScripts('rarvm.js');
/**
* rarvm.js
*
* Licensed under the MIT License
*
* Copyright(c) 2017 Google Inc.
*/
/**
* CRC Implementation.
*/
const CRCTab = new Array(256).fill(0);
// Helper functions between signed and unsigned integers.
/**
* -1 becomes 0xffffffff
*/
function fromSigned32ToUnsigned32(val) {
return (val < 0) ? (val += 0x100000000) : val;
}
/**
* 0xffffffff becomes -1
*/
function fromUnsigned32ToSigned32(val) {
return (val >= 0x80000000) ? (val -= 0x100000000) : val;
}
/**
* -1 becomes 0xff
*/
function fromSigned8ToUnsigned8(val) {
return (val < 0) ? (val += 0x100) : val;
}
/**
* 0xff becomes -1
*/
function fromUnsigned8ToSigned8(val) {
return (val >= 0x80) ? (val -= 0x100) : val;
}
function InitCRC() {
for (let i = 0; i < 256; ++i) {
let c = i;
for (let j = 0; j < 8; ++j) {
// Read http://stackoverflow.com/questions/6798111/bitwise-operations-on-32-bit-unsigned-ints
// for the bitwise operator issue (JS interprets operands as 32-bit signed
// integers and we need to deal with unsigned ones here).
c = ((c & 1) ? ((c >>> 1) ^ 0xEDB88320) : (c >>> 1)) >>> 0;
}
CRCTab[i] = c;
}
}
/**
* @param {number} startCRC
* @param {Uint8Array} arr
* @return {number}
*/
function CRC(startCRC, arr) {
if (CRCTab[1] == 0) {
InitCRC();
}
/*
#if defined(LITTLE_ENDIAN) && defined(PRESENT_INT32) && defined(ALLOW_NOT_ALIGNED_INT)
while (Size>0 && ((long)Data & 7))
{
StartCRC=CRCTab[(byte)(StartCRC^Data[0])]^(StartCRC>>8);
Size--;
Data++;
}
while (Size>=8)
{
StartCRC^=*(uint32 *)Data;
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
StartCRC^=*(uint32 *)(Data+4);
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
Data+=8;
Size-=8;
}
#endif
*/
for (let i = 0; i < arr.length; ++i) {
const byte = ((startCRC ^ arr[i]) >>> 0) & 0xff;
startCRC = (CRCTab[byte] ^ (startCRC >>> 8)) >>> 0;
}
return startCRC;
}
// ============================================================================================== //
/**
* RarVM Implementation.
*/
const VM_MEMSIZE = 0x40000;
const VM_MEMMASK = (VM_MEMSIZE - 1);
const VM_GLOBALMEMADDR = 0x3C000;
const VM_GLOBALMEMSIZE = 0x2000;
const VM_FIXEDGLOBALSIZE = 64;
const MAXWINSIZE = 0x400000;
const MAXWINMASK = (MAXWINSIZE - 1);
/**
*/
const VM_Commands = {
VM_MOV: 0,
VM_CMP: 1,
VM_ADD: 2,
VM_SUB: 3,
VM_JZ: 4,
VM_JNZ: 5,
VM_INC: 6,
VM_DEC: 7,
VM_JMP: 8,
VM_XOR: 9,
VM_AND: 10,
VM_OR: 11,
VM_TEST: 12,
VM_JS: 13,
VM_JNS: 14,
VM_JB: 15,
VM_JBE: 16,
VM_JA: 17,
VM_JAE: 18,
VM_PUSH: 19,
VM_POP: 20,
VM_CALL: 21,
VM_RET: 22,
VM_NOT: 23,
VM_SHL: 24,
VM_SHR: 25,
VM_SAR: 26,
VM_NEG: 27,
VM_PUSHA: 28,
VM_POPA: 29,
VM_PUSHF: 30,
VM_POPF: 31,
VM_MOVZX: 32,
VM_MOVSX: 33,
VM_XCHG: 34,
VM_MUL: 35,
VM_DIV: 36,
VM_ADC: 37,
VM_SBB: 38,
VM_PRINT: 39,
/*
#ifdef VM_OPTIMIZE
VM_MOVB, VM_MOVD, VM_CMPB, VM_CMPD,
VM_ADDB, VM_ADDD, VM_SUBB, VM_SUBD, VM_INCB, VM_INCD, VM_DECB, VM_DECD,
VM_NEGB, VM_NEGD,
#endif
*/
// TODO: This enum value would be much larger if VM_OPTIMIZE.
VM_STANDARD: 40,
};
/**
*/
const VM_StandardFilters = {
VMSF_NONE: 0,
VMSF_E8: 1,
VMSF_E8E9: 2,
VMSF_ITANIUM: 3,
VMSF_RGB: 4,
VMSF_AUDIO: 5,
VMSF_DELTA: 6,
VMSF_UPCASE: 7,
};
/**
*/
const VM_Flags = {
VM_FC: 1,
VM_FZ: 2,
VM_FS: 0x80000000,
};
/**
*/
const VM_OpType = {
VM_OPREG: 0,
VM_OPINT: 1,
VM_OPREGMEM: 2,
VM_OPNONE: 3,
};
/**
* Finds the key that maps to a given value in an object. This function is useful in debugging
* variables that use the above enums.
* @param {Object} obj
* @param {number} val
* @return {string} The key/enum value as a string.
*/
function findKeyForValue(obj, val) {
for (let key in obj) {
if (obj[key] === val) {
return key;
}
}
return null;
}
function getDebugString(obj, val) {
let s = 'Unknown.';
if (obj === VM_Commands) {
s = 'VM_Commands.';
} else if (obj === VM_StandardFilters) {
s = 'VM_StandardFilters.';
} else if (obj === VM_Flags) {
s = 'VM_OpType.';
} else if (obj === VM_OpType) {
s = 'VM_OpType.';
}
return s + findKeyForValue(obj, val);
}
/**
*/
class VM_PreparedOperand {
constructor() {
/** @type {VM_OpType} */
this.Type;
/** @type {number} */
this.Data = 0;
/** @type {number} */
this.Base = 0;
// TODO: In C++ this is a uint*
/** @type {Array<number>} */
this.Addr = null;
};
/** @return {string} */
toString() {
if (this.Type === null) {
return 'Error: Type was null in VM_PreparedOperand';
}
return '{ '
+ 'Type: ' + getDebugString(VM_OpType, this.Type)
+ ', Data: ' + this.Data
+ ', Base: ' + this.Base
+ ' }';
}
}
/**
*/
class VM_PreparedCommand {
constructor() {
/** @type {VM_Commands} */
this.OpCode;
/** @type {boolean} */
this.ByteMode = false;
/** @type {VM_PreparedOperand} */
this.Op1 = new VM_PreparedOperand();
/** @type {VM_PreparedOperand} */
this.Op2 = new VM_PreparedOperand();
}
/** @return {string} */
toString(indent) {
if (this.OpCode === null) {
return 'Error: OpCode was null in VM_PreparedCommand';
}
indent = indent || '';
return indent + '{\n'
+ indent + ' OpCode: ' + getDebugString(VM_Commands, this.OpCode) + ',\n'
+ indent + ' ByteMode: ' + this.ByteMode + ',\n'
+ indent + ' Op1: ' + this.Op1.toString() + ',\n'
+ indent + ' Op2: ' + this.Op2.toString() + ',\n'
+ indent + '}';
}
}
/**
*/
class VM_PreparedProgram {
constructor() {
/** @type {Array<VM_PreparedCommand>} */
this.Cmd = [];
/** @type {Array<VM_PreparedCommand>} */
this.AltCmd = null;
/** @type {Uint8Array} */
this.GlobalData = new Uint8Array();
/** @type {Uint8Array} */
this.StaticData = new Uint8Array(); // static data contained in DB operators
/** @type {Uint32Array} */
this.InitR = new Uint32Array(7);
/**
* A pointer to bytes that have been filtered by a program.
* @type {Uint8Array}
*/
this.FilteredData = null;
}
/** @return {string} */
toString() {
let s = '{\n Cmd: [\n';
for (let i = 0; i < this.Cmd.length; ++i) {
s += this.Cmd[i].toString(' ') + ',\n';
}
s += '],\n';
// TODO: Dump GlobalData, StaticData, InitR?
s += ' }\n';
return s;
}
}
/**
*/
class UnpackFilter {
constructor() {
/** @type {number} */
this.BlockStart = 0;
/** @type {number} */
this.BlockLength = 0;
/** @type {number} */
this.ExecCount = 0;
/** @type {boolean} */
this.NextWindow = false;
// position of parent filter in Filters array used as prototype for filter
// in PrgStack array. Not defined for filters in Filters array.
/** @type {number} */
this.ParentFilter = null;
/** @type {VM_PreparedProgram} */
this.Prg = new VM_PreparedProgram();
}
}
const VMCF_OP0 = 0;
const VMCF_OP1 = 1;
const VMCF_OP2 = 2;
const VMCF_OPMASK = 3;
const VMCF_BYTEMODE = 4;
const VMCF_JUMP = 8;
const VMCF_PROC = 16;
const VMCF_USEFLAGS = 32;
const VMCF_CHFLAGS = 64;
const VM_CmdFlags = [
/* VM_MOV */ VMCF_OP2 | VMCF_BYTEMODE ,
/* VM_CMP */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_ADD */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_SUB */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_JZ */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_JNZ */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_INC */ VMCF_OP1 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_DEC */ VMCF_OP1 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_JMP */ VMCF_OP1 | VMCF_JUMP ,
/* VM_XOR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_AND */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_OR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_TEST */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_JS */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_JNS */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_JB */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_JBE */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_JA */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_JAE */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
/* VM_PUSH */ VMCF_OP1 ,
/* VM_POP */ VMCF_OP1 ,
/* VM_CALL */ VMCF_OP1 | VMCF_PROC ,
/* VM_RET */ VMCF_OP0 | VMCF_PROC ,
/* VM_NOT */ VMCF_OP1 | VMCF_BYTEMODE ,
/* VM_SHL */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_SHR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_SAR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_NEG */ VMCF_OP1 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
/* VM_PUSHA */ VMCF_OP0 ,
/* VM_POPA */ VMCF_OP0 ,
/* VM_PUSHF */ VMCF_OP0 | VMCF_USEFLAGS ,
/* VM_POPF */ VMCF_OP0 | VMCF_CHFLAGS ,
/* VM_MOVZX */ VMCF_OP2 ,
/* VM_MOVSX */ VMCF_OP2 ,
/* VM_XCHG */ VMCF_OP2 | VMCF_BYTEMODE ,
/* VM_MUL */ VMCF_OP2 | VMCF_BYTEMODE ,
/* VM_DIV */ VMCF_OP2 | VMCF_BYTEMODE ,
/* VM_ADC */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_USEFLAGS | VMCF_CHFLAGS ,
/* VM_SBB */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_USEFLAGS | VMCF_CHFLAGS ,
/* VM_PRINT */ VMCF_OP0 ,
];
/**
*/
class StandardFilterSignature {
/**
* @param {number} length
* @param {number} crc
* @param {VM_StandardFilters} type
*/
constructor(length, crc, type) {
/** @type {number} */
this.Length = length;
/** @type {number} */
this.CRC = crc;
/** @type {VM_StandardFilters} */
this.Type = type;
}
}
/**
* @type {Array<StandardFilterSignature>}
*/
const StdList = [
new StandardFilterSignature(53, 0xad576887, VM_StandardFilters.VMSF_E8),
new StandardFilterSignature(57, 0x3cd7e57e, VM_StandardFilters.VMSF_E8E9),
new StandardFilterSignature(120, 0x3769893f, VM_StandardFilters.VMSF_ITANIUM),
new StandardFilterSignature(29, 0x0e06077d, VM_StandardFilters.VMSF_DELTA),
new StandardFilterSignature(149, 0x1c2c5dc8, VM_StandardFilters.VMSF_RGB),
new StandardFilterSignature(216, 0xbc85e701, VM_StandardFilters.VMSF_AUDIO),
new StandardFilterSignature(40, 0x46b9c560, VM_StandardFilters.VMSF_UPCASE),
];
/**
* @constructor
*/
class RarVM {
constructor() {
/** @private {Uint8Array} */
this.mem_ = null;
/** @private {Uint32Array<number>} */
this.R_ = new Uint32Array(8);
/** @private {number} */
this.flags_ = 0;
}
/**
* Initializes the memory of the VM.
*/
init() {
if (!this.mem_) {
this.mem_ = new Uint8Array(VM_MEMSIZE);
}
}
/**
* @param {Uint8Array} code
* @return {VM_StandardFilters}
*/
isStandardFilter(code) {
const codeCRC = (CRC(0xffffffff, code, code.length) ^ 0xffffffff) >>> 0;
for (let i = 0; i < StdList.length; ++i) {
if (StdList[i].CRC == codeCRC && StdList[i].Length == code.length)
return StdList[i].Type;
}
return VM_StandardFilters.VMSF_NONE;
}
/**
* @param {VM_PreparedOperand} op
* @param {boolean} byteMode
* @param {bitjs.io.BitStream} bstream A rtl bit stream.
*/
decodeArg(op, byteMode, bstream) {
const data = bstream.peekBits(16);
if (data & 0x8000) {
op.Type = VM_OpType.VM_OPREG; // Operand is register (R[0]..R[7])
bstream.readBits(1); // 1 flag bit and...
op.Data = bstream.readBits(3); // ... 3 register number bits
op.Addr = [this.R_[op.Data]] // TODO &R[Op.Data] // Register address
} else {
if ((data & 0xc000) == 0) {
op.Type = VM_OpType.VM_OPINT; // Operand is integer
bstream.readBits(2); // 2 flag bits
if (byteMode) {
op.Data = bstream.readBits(8); // Byte integer.
} else {
op.Data = RarVM.readData(bstream); // 32 bit integer.
}
} else {
// Operand is data addressed by register data, base address or both.
op.Type = VM_OpType.VM_OPREGMEM;
if ((data & 0x2000) == 0) {
bstream.readBits(3); // 3 flag bits
// Base address is zero, just use the address from register.
op.Data = bstream.readBits(3); // (Data>>10)&7
op.Addr = [this.R_[op.Data]]; // TODO &R[op.Data]
op.Base = 0;
} else {
bstream.readBits(4); // 4 flag bits
if ((data & 0x1000) == 0) {
// Use both register and base address.
op.Data = bstream.readBits(3);
op.Addr = [this.R_[op.Data]]; // TODO &R[op.Data]
} else {
// Use base address only. Access memory by fixed address.
op.Data = 0;
}
op.Base = RarVM.readData(bstream); // Read base address.
}
}
}
}
/**
* @param {VM_PreparedProgram} prg
*/
execute(prg) {
this.R_.set(prg.InitR);
const globalSize = Math.min(prg.GlobalData.length, VM_GLOBALMEMSIZE);
if (globalSize) {
this.mem_.set(prg.GlobalData.subarray(0, globalSize), VM_GLOBALMEMADDR);
}
const staticSize = Math.min(prg.StaticData.length, VM_GLOBALMEMSIZE - globalSize);
if (staticSize) {
this.mem_.set(prg.StaticData.subarray(0, staticSize), VM_GLOBALMEMADDR + globalSize);
}
this.R_[7] = VM_MEMSIZE;
this.flags_ = 0;
const preparedCodes = prg.AltCmd ? prg.AltCmd : prg.Cmd;
if (prg.Cmd.length > 0 && !this.executeCode(preparedCodes)) {
// Invalid VM program. Let's replace it with 'return' command.
preparedCode.OpCode = VM_Commands.VM_RET;
}
const dataView = new DataView(this.mem_.buffer, VM_GLOBALMEMADDR);
let newBlockPos = dataView.getUint32(0x20, true /* little endian */) & VM_MEMMASK;
const newBlockSize = dataView.getUint32(0x1c, true /* little endian */) & VM_MEMMASK;
if (newBlockPos + newBlockSize >= VM_MEMSIZE) {
newBlockPos = newBlockSize = 0;
}
prg.FilteredData = this.mem_.subarray(newBlockPos, newBlockPos + newBlockSize);
prg.GlobalData = new Uint8Array(0);
const dataSize = Math.min(dataView.getUint32(0x30), (VM_GLOBALMEMSIZE - VM_FIXEDGLOBALSIZE));
if (dataSize != 0) {
const len = dataSize + VM_FIXEDGLOBALSIZE;
prg.GlobalData = new Uint8Array(len);
prg.GlobalData.set(mem.subarray(VM_GLOBALMEMADDR, VM_GLOBALMEMADDR + len));
}
}
/**
* @param {Array<VM_PreparedCommand>} preparedCodes
* @return {boolean}
*/
executeCode(preparedCodes) {
let codeIndex = 0;
let cmd = preparedCodes[codeIndex];
// TODO: Why is this an infinite loop instead of just returning
// when a VM_RET is hit?
while (1) {
switch (cmd.OpCode) {
case VM_Commands.VM_RET:
if (this.R_[7] >= VM_MEMSIZE) {
return true;
}
//SET_IP(GET_VALUE(false,(uint *)&Mem[R[7] & VM_MEMMASK]));
this.R_[7] += 4;
continue;
case VM_Commands.VM_STANDARD:
this.executeStandardFilter(cmd.Op1.Data);
break;
default:
console.error('RarVM OpCode not supported: ' + getDebugString(VM_Commands, cmd.OpCode));
break;
} // switch (cmd.OpCode)
codeIndex++;
cmd = preparedCodes[codeIndex];
}
}
/**
* @param {number} filterType
*/
executeStandardFilter(filterType) {
switch (filterType) {
case VM_StandardFilters.VMSF_RGB: {
const dataSize = this.R_[4];
const width = this.R_[0] - 3;
const posR = this.R_[1];
const Channels = 3;
let srcOffset = 0;
let destOffset = dataSize;
// byte *SrcData=Mem,*DestData=SrcData+DataSize;
// SET_VALUE(false,&Mem[VM_GLOBALMEMADDR+0x20],DataSize);
const dataView = new DataView(this.mem_.buffer, VM_GLOBALMEMADDR /* offset */);
dataView.setUint32(0x20 /* byte offset */,
dataSize /* value */,
true /* little endian */);
if (dataSize >= (VM_GLOBALMEMADDR / 2) || posR < 0) {
break;
}
for (let curChannel = 0; curChannel < Channels; ++curChannel) {
let prevByte=0;
for (let i = curChannel; i < dataSize; i += Channels) {
let predicted;
const upperPos = i - width;
if (upperPos >= 3) {
const upperByte = this.mem_[destOffset + upperPos];
const upperLeftByte = this.mem_[destOffset + upperPos - 3];
predicted = prevByte + upperByte - upperLeftByte;
const pa = Math.abs(predicted - prevByte);
const pb = Math.abs(predicted - upperByte);
const pc = Math.abs(predicted - upperLeftByte);
if (pa <= pb && pa <= pc) {
predicted = prevByte;
} else if (pb <= pc) {
predicted = upperByte;
} else {
predicted = upperLeftByte;
}
} else {
predicted = prevByte;
}
//DestData[I]=PrevByte=(byte)(Predicted-*(SrcData++));
prevByte = (predicted - this.mem_[srcOffset++]) & 0xff;
this.mem_[destOffset + i] = prevByte;
}
}
for (let i = posR, border = dataSize - 2; i < border; i += 3) {
const g = this.mem_[destOffset + i + 1];
this.mem_[destOffset + i] += g;
this.mem_[destOffset + i + 2] += g;
}
break;
}
// The C++ version of this standard filter uses an odd mixture of
// signed and unsigned integers, bytes and various casts. Careful!
case VM_StandardFilters.VMSF_AUDIO: {
const dataSize = this.R_[4];
const channels = this.R_[0];
let srcOffset = 0;
let destOffset = dataSize;
//SET_VALUE(false,&Mem[VM_GLOBALMEMADDR+0x20],DataSize);
const dataView = new DataView(this.mem_.buffer, VM_GLOBALMEMADDR);
dataView.setUint32(0x20 /* byte offset */,
dataSize /* value */,
true /* little endian */);
if (dataSize >= VM_GLOBALMEMADDR / 2) {
break;
}
for (let curChannel = 0; curChannel < channels; ++curChannel) {
let prevByte = 0; // uint
let prevDelta = 0; // uint
let dif = [0, 0, 0, 0, 0, 0, 0];
let d1 = 0, d2 = 0, d3; // ints
let k1 = 0, k2 = 0, k3 = 0; // ints
for (var i = curChannel, byteCount = 0;
i < dataSize;
i += channels, ++byteCount) {
d3 = d2;
d2 = fromUnsigned32ToSigned32(prevDelta - d1);
d1 = fromUnsigned32ToSigned32(prevDelta);
let predicted = fromSigned32ToUnsigned32(8*prevByte + k1*d1 + k2*d2 + k3*d3); // uint
predicted = (predicted >>> 3) & 0xff;
let curByte = this.mem_[srcOffset++]; // uint
// Predicted-=CurByte;
predicted = fromSigned32ToUnsigned32(predicted - curByte);
this.mem_[destOffset + i] = (predicted & 0xff);
// PrevDelta=(signed char)(Predicted-PrevByte);
// where Predicted, PrevByte, PrevDelta are all unsigned int (32)
// casting this subtraction to a (signed char) is kind of invalid
// but it does the following:
// - do the subtraction
// - get the bottom 8 bits of the result
// - if it was >= 0x80, then the value is negative (subtract 0x100)
// - if the value is now negative, add 0x100000000 to make unsigned
//
// Example:
// predicted = 101
// prevByte = 4294967158
// (predicted - prevByte) = -4294967057
// take lower 8 bits: 1110 1111 = 239
// since > 127, subtract 256 = -17
// since < 0, add 0x100000000 = 4294967279
prevDelta = fromSigned32ToUnsigned32(
fromUnsigned8ToSigned8((predicted - prevByte) & 0xff));
prevByte = predicted;
// int D=((signed char)CurByte)<<3;
let curByteAsSignedChar = fromUnsigned8ToSigned8(curByte); // signed char
let d = (curByteAsSignedChar << 3);
dif[0] += Math.abs(d);
dif[1] += Math.abs(d-d1);
dif[2] += Math.abs(d+d1);
dif[3] += Math.abs(d-d2);
dif[4] += Math.abs(d+d2);
dif[5] += Math.abs(d-d3);
dif[6] += Math.abs(d+d3);
if ((byteCount & 0x1f) == 0) {
let minDif = dif[0], numMinDif = 0;
dif[0] = 0;
for (let j = 1; j < 7; ++j) {
if (dif[j] < minDif) {
minDif = dif[j];
numMinDif = j;
}
dif[j] = 0;
}
switch (numMinDif) {
case 1: if (k1>=-16) k1--; break;
case 2: if (k1 < 16) k1++; break;
case 3: if (k2>=-16) k2--; break;
case 4: if (k2 < 16) k2++; break;
case 5: if (k3>=-16) k3--; break;
case 6: if (k3 < 16) k3++; break;
}
}
}
}
break;
}
case VM_StandardFilters.VMSF_DELTA: {
const dataSize = this.R_[4];
const channels = this.R_[0];
let srcPos = 0;
const border = dataSize * 2;
//SET_VALUE(false,&Mem[VM_GLOBALMEMADDR+0x20],DataSize);
const dataView = new DataView(this.mem_.buffer, VM_GLOBALMEMADDR);
dataView.setUint32(0x20 /* byte offset */,
dataSize /* value */,
true /* little endian */);
if (dataSize >= VM_GLOBALMEMADDR / 2) {
break;
}
// Bytes from same channels are grouped to continual data blocks,
// so we need to place them back to their interleaving positions.
for (let curChannel = 0; curChannel < channels; ++curChannel) {
let prevByte = 0;
for (let destPos = dataSize + curChannel; destPos < border; destPos += channels) {
prevByte = (prevByte - this.mem_[srcPos++]) & 0xff;
this.mem_[destPos] = prevByte;
}
}
break;
}
default:
console.error('RarVM Standard Filter not supported: ' + getDebugString(VM_StandardFilters, filterType));
break;
}
}
/**
* @param {Uint8Array} code
* @param {VM_PreparedProgram} prg
*/
prepare(code, prg) {
let codeSize = code.length;
//InitBitInput();
//memcpy(InBuf,Code,Min(CodeSize,BitInput::MAX_SIZE));
const bstream = new bitjs.io.BitStream(code.buffer, true /* rtl */);
// Calculate the single byte XOR checksum to check validity of VM code.
let xorSum = 0;
for (let i = 1; i < codeSize; ++i) {
xorSum ^= code[i];
}
bstream.readBits(8);
prg.Cmd = []; // TODO: Is this right? I don't see it being done in rarvm.cpp.
// VM code is valid if equal.
if (xorSum == code[0]) {
const filterType = this.isStandardFilter(code);
if (filterType != VM_StandardFilters.VMSF_NONE) {
// VM code is found among standard filters.
const curCmd = new VM_PreparedCommand();
prg.Cmd.push(curCmd);
curCmd.OpCode = VM_Commands.VM_STANDARD;
curCmd.Op1.Data = filterType;
// TODO: Addr=&CurCmd->Op1.Data
curCmd.Op1.Addr = [curCmd.Op1.Data];
curCmd.Op2.Addr = [null]; // &CurCmd->Op2.Data;
curCmd.Op1.Type = VM_OpType.VM_OPNONE;
curCmd.Op2.Type = VM_OpType.VM_OPNONE;
codeSize = 0;
}
const dataFlag = bstream.readBits(1);
// Read static data contained in DB operators. This data cannot be
// changed, it is a part of VM code, not a filter parameter.
if (dataFlag & 0x8000) {
const dataSize = RarVM.readData(bstream) + 1;
// TODO: This accesses the byte pointer of the bstream directly. Is that ok?
for (let i = 0; i < bstream.bytePtr < codeSize && i < dataSize; ++i) {
// Append a byte to the program's static data.
const newStaticData = new Uint8Array(prg.StaticData.length + 1);
newStaticData.set(prg.StaticData);
newStaticData[newStaticData.length - 1] = bstream.readBits(8);
prg.StaticData = newStaticData;
}
}
while (bstream.bytePtr < codeSize) {
const curCmd = new VM_PreparedCommand();
prg.Cmd.push(curCmd); // Prg->Cmd.Add(1)
const flag = bstream.peekBits(1);
if (!flag) { // (Data&0x8000)==0
curCmd.OpCode = bstream.readBits(4);
} else {
curCmd.OpCode = (bstream.readBits(6) - 24);
}
if (VM_CmdFlags[curCmd.OpCode] & VMCF_BYTEMODE) {
curCmd.ByteMode = (bstream.readBits(1) != 0);
} else {
curCmd.ByteMode = 0;
}
curCmd.Op1.Type = VM_OpType.VM_OPNONE;
curCmd.Op2.Type = VM_OpType.VM_OPNONE;
const opNum = (VM_CmdFlags[curCmd.OpCode] & VMCF_OPMASK);
curCmd.Op1.Addr = null;
curCmd.Op2.Addr = null;
if (opNum > 0) {
this.decodeArg(curCmd.Op1, curCmd.ByteMode, bstream); // reading the first operand
if (opNum == 2) {
this.decodeArg(curCmd.Op2, curCmd.ByteMode, bstream); // reading the second operand
} else {
if (curCmd.Op1.Type == VM_OpType.VM_OPINT && (VM_CmdFlags[curCmd.OpCode] & (VMCF_JUMP|VMCF_PROC))) {
// Calculating jump distance.
let distance = curCmd.Op1.Data;
if (distance >= 256) {
distance -= 256;
} else {
if (distance >= 136) {
distance -= 264;
} else {
if (distance >= 16) {
distance -= 8;
} else {
if (distance >= 8) {
distance -= 16;
}
}
}
distance += prg.Cmd.length;
}
curCmd.Op1.Data = distance;
}
}
} // if (OpNum>0)
} // while ((uint)InAddr<CodeSize)
} // if (XorSum==Code[0])
const curCmd = new VM_PreparedCommand();
prg.Cmd.push(curCmd);
curCmd.OpCode = VM_Commands.VM_RET;
// TODO: Addr=&CurCmd->Op1.Data
curCmd.Op1.Addr = [curCmd.Op1.Data];
curCmd.Op2.Addr = [curCmd.Op2.Data];
curCmd.Op1.Type = VM_OpType.VM_OPNONE;
curCmd.Op2.Type = VM_OpType.VM_OPNONE;
// If operand 'Addr' field has not been set by DecodeArg calls above,
// let's set it to point to operand 'Data' field. It is necessary for
// VM_OPINT type operands (usual integers) or maybe if something was
// not set properly for other operands. 'Addr' field is required
// for quicker addressing of operand data.
for (let i = 0; i < prg.Cmd.length; ++i) {
const cmd = prg.Cmd[i];
if (cmd.Op1.Addr == null) {
cmd.Op1.Addr = [cmd.Op1.Data];
}
if (cmd.Op2.Addr == null) {
cmd.Op2.Addr = [cmd.Op2.Data];
}
}
/*
#ifdef VM_OPTIMIZE
if (CodeSize!=0)
Optimize(Prg);
#endif
*/
}
/**
* @param {Uint8Array} arr The byte array to set a value in.
* @param {number} value The unsigned 32-bit value to set.
* @param {number} offset Offset into arr to start setting the value, defaults to 0.
*/
setLowEndianValue(arr, value, offset) {
const i = offset || 0;
arr[i] = value & 0xff;
arr[i + 1] = (value >>> 8) & 0xff;
arr[i + 2] = (value >>> 16) & 0xff;
arr[i + 3] = (value >>> 24) & 0xff;
}
/**
* Sets a number of bytes of the VM memory at the given position from a
* source buffer of bytes.
* @param {number} pos The position in the VM memory to start writing to.
* @param {Uint8Array} buffer The source buffer of bytes.
* @param {number} dataSize The number of bytes to set.
*/
setMemory(pos, buffer, dataSize) {
if (pos < VM_MEMSIZE) {
const numBytes = Math.min(dataSize, VM_MEMSIZE - pos);
for (let i = 0; i < numBytes; ++i) {
this.mem_[pos + i] = buffer[i];
}
}
}
/**
* Static function that reads in the next set of bits for the VM
* (might return 4, 8, 16 or 32 bits).
* @param {bitjs.io.BitStream} bstream A RTL bit stream.
* @return {number} The value of the bits read.
*/
static readData(bstream) {
// Read in the first 2 bits.
const flags = bstream.readBits(2);
switch (flags) { // Data&0xc000
// Return the next 4 bits.
case 0:
return bstream.readBits(4); // (Data>>10)&0xf
case 1: // 0x4000
// 0x3c00 => 0011 1100 0000 0000
if (bstream.peekBits(4) == 0) { // (Data&0x3c00)==0
// Skip the 4 zero bits.
bstream.readBits(4);
// Read in the next 8 and pad with 1s to 32 bits.
return (0xffffff00 | bstream.readBits(8)) >>> 0; // ((Data>>2)&0xff)
}
// Else, read in the next 8.
return bstream.readBits(8);
// Read in the next 16.
case 2: // 0x8000
const val = bstream.getBits();
bstream.readBits(16);
return val; //bstream.readBits(16);
// case 3
default:
return (bstream.readBits(16) << 16) | bstream.readBits(16);
}
}
}
// ============================================================================================== //
// Progress variables.
let currentFilename = "";
let currentFileNumber = 0;
let currentBytesUnarchivedInFile = 0;
let currentBytesUnarchived = 0;
let totalUncompressedBytesInArchive = 0;
let totalFilesInArchive = 0;
// Helper functions.
const info = function(str) {
postMessage(new bitjs.archive.UnarchiveInfoEvent(str));
};
const err = function(str) {
postMessage(new bitjs.archive.UnarchiveErrorEvent(str));
};
const postProgress = function() {
postMessage(new bitjs.archive.UnarchiveProgressEvent(
currentFilename,
currentFileNumber,
currentBytesUnarchivedInFile,
currentBytesUnarchived,
totalUncompressedBytesInArchive,
totalFilesInArchive));
};
// shows a byte value as its hex representation
const nibble = "0123456789ABCDEF";
const byteValueToHexString = function(num) {
return nibble[num>>4] + nibble[num&0xF];
};
const twoByteValueToHexString = function(num) {
return nibble[(num>>12)&0xF] + nibble[(num>>8)&0xF] + nibble[(num>>4)&0xF] + nibble[num&0xF];
};
// Volume Types
const MARK_HEAD = 0x72;
const MAIN_HEAD = 0x73;
const FILE_HEAD = 0x74;
const COMM_HEAD = 0x75;
const AV_HEAD = 0x76;
const SUB_HEAD = 0x77;
const PROTECT_HEAD = 0x78;
const SIGN_HEAD = 0x79;
const NEWSUB_HEAD = 0x7a;
const ENDARC_HEAD = 0x7b;
// ============================================================================================== //
/**
*/
class RarVolumeHeader {
/**
* @param {bitjs.io.BitStream} bstream
*/
constructor(bstream) {
const headPos = bstream.bytePtr;
// byte 1,2
info("Rar Volume Header @"+bstream.bytePtr);
this.crc = bstream.readBits(16);
info(" crc=" + this.crc);
// byte 3
this.headType = bstream.readBits(8);
info(" headType=" + this.headType);
// Get flags
// bytes 4,5
this.flags = {};
this.flags.value = bstream.peekBits(16);
info(" flags=" + twoByteValueToHexString(this.flags.value));
switch (this.headType) {
case MAIN_HEAD:
this.flags.MHD_VOLUME = !!bstream.readBits(1);
this.flags.MHD_COMMENT = !!bstream.readBits(1);
this.flags.MHD_LOCK = !!bstream.readBits(1);
this.flags.MHD_SOLID = !!bstream.readBits(1);
this.flags.MHD_PACK_COMMENT = !!bstream.readBits(1);
this.flags.MHD_NEWNUMBERING = this.flags.MHD_PACK_COMMENT;
this.flags.MHD_AV = !!bstream.readBits(1);
this.flags.MHD_PROTECT = !!bstream.readBits(1);
this.flags.MHD_PASSWORD = !!bstream.readBits(1);
this.flags.MHD_FIRSTVOLUME = !!bstream.readBits(1);
this.flags.MHD_ENCRYPTVER = !!bstream.readBits(1);
bstream.readBits(6); // unused
break;
case FILE_HEAD:
this.flags.LHD_SPLIT_BEFORE = !!bstream.readBits(1); // 0x0001
this.flags.LHD_SPLIT_AFTER = !!bstream.readBits(1); // 0x0002
this.flags.LHD_PASSWORD = !!bstream.readBits(1); // 0x0004
this.flags.LHD_COMMENT = !!bstream.readBits(1); // 0x0008
this.flags.LHD_SOLID = !!bstream.readBits(1); // 0x0010
bstream.readBits(3); // unused
this.flags.LHD_LARGE = !!bstream.readBits(1); // 0x0100
this.flags.LHD_UNICODE = !!bstream.readBits(1); // 0x0200
this.flags.LHD_SALT = !!bstream.readBits(1); // 0x0400
this.flags.LHD_VERSION = !!bstream.readBits(1); // 0x0800
this.flags.LHD_EXTTIME = !!bstream.readBits(1); // 0x1000
this.flags.LHD_EXTFLAGS = !!bstream.readBits(1); // 0x2000
bstream.readBits(2); // unused
info(" LHD_SPLIT_BEFORE = " + this.flags.LHD_SPLIT_BEFORE);
break;
default:
bstream.readBits(16);
}
// byte 6,7
this.headSize = bstream.readBits(16);
info(" headSize=" + this.headSize);
switch (this.headType) {
case MAIN_HEAD:
this.highPosAv = bstream.readBits(16);
this.posAv = bstream.readBits(32);
if (this.flags.MHD_ENCRYPTVER) {
this.encryptVer = bstream.readBits(8);
}
info("Found MAIN_HEAD with highPosAv=" + this.highPosAv + ", posAv=" + this.posAv);
break;
case FILE_HEAD:
this.packSize = bstream.readBits(32);
this.unpackedSize = bstream.readBits(32);
this.hostOS = bstream.readBits(8);
this.fileCRC = bstream.readBits(32);
this.fileTime = bstream.readBits(32);
this.unpVer = bstream.readBits(8);
this.method = bstream.readBits(8);
this.nameSize = bstream.readBits(16);
this.fileAttr = bstream.readBits(32);
if (this.flags.LHD_LARGE) {
info("Warning: Reading in LHD_LARGE 64-bit size values");
this.HighPackSize = bstream.readBits(32);
this.HighUnpSize = bstream.readBits(32);
} else {
this.HighPackSize = 0;
this.HighUnpSize = 0;
if (this.unpackedSize == 0xffffffff) {
this.HighUnpSize = 0x7fffffff
this.unpackedSize = 0xffffffff;
}
}
this.fullPackSize = 0;
this.fullUnpackSize = 0;
this.fullPackSize |= this.HighPackSize;
this.fullPackSize <<= 32;
this.fullPackSize |= this.packSize;
// read in filename
this.filename = bstream.readBytes(this.nameSize);
let _s = '';
for (let _i = 0; _i < this.filename.length; _i++) {
_s += String.fromCharCode(this.filename[_i]);
}
this.filename = _s;
if (this.flags.LHD_SALT) {
info("Warning: Reading in 64-bit salt value");
this.salt = bstream.readBits(64); // 8 bytes
}
if (this.flags.LHD_EXTTIME) {
// 16-bit flags
const extTimeFlags = bstream.readBits(16);
// this is adapted straight out of arcread.cpp, Archive::ReadHeader()
for (let I = 0; I < 4; ++I) {
const rmode = extTimeFlags >> ((3 - I) * 4);
if ((rmode & 8) == 0) {
continue;
}
if (I != 0)
bstream.readBits(16);
const count = (rmode & 3);
for (let J = 0; J < count; ++J) {
bstream.readBits(8);
}
}
}
if (this.flags.LHD_COMMENT) {
info("Found a LHD_COMMENT");
}
while (headPos + this.headSize > bstream.bytePtr) {
bstream.readBits(1);
}
info("Found FILE_HEAD with packSize=" + this.packSize + ", unpackedSize= " + this.unpackedSize + ", hostOS=" + this.hostOS + ", unpVer=" + this.unpVer + ", method=" + this.method + ", filename=" + this.filename);
break;
default:
info("Found a header of type 0x" + byteValueToHexString(this.headType));
// skip the rest of the header bytes (for now)
bstream.readBytes(this.headSize - 7);
break;
}
}
}
const BLOCK_LZ = 0;
const BLOCK_PPM = 1;
const rLDecode = [0,1,2,3,4,5,6,7,8,10,12,14,16,20,24,28,32,40,48,56,64,80,96,112,128,160,192,224];
const rLBits = [0,0,0,0,0,0,0,0,1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5];
const rDBitLengthCounts = [4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,14,0,12];
const rSDDecode = [0,4,8,16,32,64,128,192];
const rSDBits = [2,2,3, 4, 5, 6, 6, 6];
const rDDecode = [0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32,
48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072,
4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304,
131072, 196608, 262144, 327680, 393216, 458752, 524288, 589824,
655360, 720896, 786432, 851968, 917504, 983040];
const rDBits = [0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5,
5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14,
15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16];
const rLOW_DIST_REP_COUNT = 16;
const rNC = 299;
const rDC = 60;
const rLDC = 17;
const rRC = 28;
const rBC = 20;
const rHUFF_TABLE_SIZE = (rNC+rDC+rRC+rLDC);
const UnpOldTable = new Array(rHUFF_TABLE_SIZE);
const BD = { //bitdecode
DecodeLen: new Array(16),
DecodePos: new Array(16),
DecodeNum: new Array(rBC)
};
const LD = { //litdecode
DecodeLen: new Array(16),
DecodePos: new Array(16),
DecodeNum: new Array(rNC)
};
const DD = { //distdecode
DecodeLen: new Array(16),
DecodePos: new Array(16),
DecodeNum: new Array(rDC)
};
const LDD = { //low dist decode
DecodeLen: new Array(16),
DecodePos: new Array(16),
DecodeNum: new Array(rLDC)
};
const RD = { //rep decode
DecodeLen: new Array(16),
DecodePos: new Array(16),
DecodeNum: new Array(rRC)
};
/**
* @type {Array<bitjs.io.ByteBuffer>}
*/
const rOldBuffers = [];
/**
* The current buffer we are unpacking to.
* @type {bitjs.io.ByteBuffer}
*/
let rBuffer;
/**
* The buffer of the final bytes after filtering (only used in Unpack29).
* @type {bitjs.io.ByteBuffer}
*/
let wBuffer;
/**
* In unpack.cpp, UnpPtr keeps track of what bytes have been unpacked
* into the Window buffer and WrPtr keeps track of what bytes have been
* actually written to disk after the unpacking and optional filtering
* has been done.
*
* In our case, rBuffer is the buffer for the unpacked bytes and wBuffer is
* the final output bytes.
*/
/**
* Read in Huffman tables for RAR
* @param {bitjs.io.BitStream} bstream
*/
function RarReadTables(bstream) {
const BitLength = new Array(rBC);
const Table = new Array(rHUFF_TABLE_SIZE);
// before we start anything we need to get byte-aligned
bstream.readBits( (8 - bstream.bitPtr) & 0x7 );
if (bstream.readBits(1)) {
info("Error! PPM not implemented yet");
return;
}
if (!bstream.readBits(1)) { //discard old table
for (let i = UnpOldTable.length; i--;) {
UnpOldTable[i] = 0;
}
}
// read in bit lengths
for (let I = 0; I < rBC; ++I) {
const Length = bstream.readBits(4);
if (Length == 15) {
let ZeroCount = bstream.readBits(4);
if (ZeroCount == 0) {
BitLength[I] = 15;
}
else {
ZeroCount += 2;
while (ZeroCount-- > 0 && I < rBC)
BitLength[I++] = 0;
--I;
}
}
else {
BitLength[I] = Length;
}
}
// now all 20 bit lengths are obtained, we construct the Huffman Table:
RarMakeDecodeTables(BitLength, 0, BD, rBC);
const TableSize = rHUFF_TABLE_SIZE;
for (let i = 0; i < TableSize;) {
const num = RarDecodeNumber(bstream, BD);
if (num < 16) {
Table[i] = (num + UnpOldTable[i]) & 0xf;
i++;
} else if (num < 18) {
let N = (num == 16) ? (bstream.readBits(3) + 3) : (bstream.readBits(7) + 11);
while (N-- > 0 && i < TableSize) {
Table[i] = Table[i - 1];
i++;
}
} else {
let N = (num == 18) ? (bstream.readBits(3) + 3) : (bstream.readBits(7) + 11);
while (N-- > 0 && i < TableSize) {
Table[i++] = 0;
}
}
}
RarMakeDecodeTables(Table, 0, LD, rNC);
RarMakeDecodeTables(Table, rNC, DD, rDC);
RarMakeDecodeTables(Table, rNC + rDC, LDD, rLDC);
RarMakeDecodeTables(Table, rNC + rDC + rLDC, RD, rRC);
for (let i = UnpOldTable.length; i--;) {
UnpOldTable[i] = Table[i];
}
return true;
}
function RarDecodeNumber(bstream, dec) {
const DecodeLen = dec.DecodeLen;
const DecodePos = dec.DecodePos;
const DecodeNum = dec.DecodeNum;
const bitField = bstream.getBits() & 0xfffe;
//some sort of rolled out binary search
const bits = ((bitField < DecodeLen[8])?
((bitField < DecodeLen[4])?
((bitField < DecodeLen[2])?
((bitField < DecodeLen[1])?1:2)
:((bitField < DecodeLen[3])?3:4))
:(bitField < DecodeLen[6])?
((bitField < DecodeLen[5])?5:6)
:((bitField < DecodeLen[7])?7:8))
:((bitField < DecodeLen[12])?
((bitField < DecodeLen[10])?
((bitField < DecodeLen[9])?9:10)
:((bitField < DecodeLen[11])?11:12))
:(bitField < DecodeLen[14])?
((bitField < DecodeLen[13])?13:14)
:15));
bstream.readBits(bits);
const N = DecodePos[bits] + ((bitField - DecodeLen[bits -1]) >>> (16 - bits));
return DecodeNum[N];
}
function RarMakeDecodeTables(BitLength, offset, dec, size) {
const DecodeLen = dec.DecodeLen;
const DecodePos = dec.DecodePos;
const DecodeNum = dec.DecodeNum;
const LenCount = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
const TmpPos = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0];
let N = 0;
let M = 0;
for (let i = DecodeNum.length; i--;) {
DecodeNum[i] = 0;
}
for (let i = 0; i < size; i++) {
LenCount[BitLength[i + offset] & 0xF]++;
}
LenCount[0] = 0;
TmpPos[0] = 0;
DecodePos[0] = 0;
DecodeLen[0] = 0;
for (let I = 1; I < 16; ++I) {
N = 2 * (N+LenCount[I]);
M = (N << (15-I));
if (M > 0xFFFF) {
M = 0xFFFF;
}
DecodeLen[I] = M;
DecodePos[I] = DecodePos[I-1] + LenCount[I-1];
TmpPos[I] = DecodePos[I];
}
for (let I = 0; I < size; ++I) {
if (BitLength[I + offset] != 0) {
DecodeNum[ TmpPos[ BitLength[offset + I] & 0xF ]++] = I;
}
}
}
// TODO: implement
/**
* @param {bitjs.io.BitStream} bstream
* @param {boolean} Solid
*/
function Unpack15(bstream, Solid) {
info("ERROR! RAR 1.5 compression not supported");
}
/**
* Unpacks the bit stream into rBuffer using the Unpack20 algorithm.
* @param {bitjs.io.BitStream} bstream
* @param {boolean} Solid
*/
function Unpack20(bstream, Solid) {
const destUnpSize = rBuffer.data.length;
let oldDistPtr = 0;
if (!Solid) {
RarReadTables20(bstream);
}
while (destUnpSize > rBuffer.ptr) {
let num = RarDecodeNumber(bstream, LD);
if (num < 256) {
rBuffer.insertByte(num);
continue;
}
if (num > 269) {
let Length = rLDecode[num -= 270] + 3;
if ((Bits = rLBits[num]) > 0) {
Length += bstream.readBits(Bits);
}
let DistNumber = RarDecodeNumber(bstream, DD);
let Distance = rDDecode[DistNumber] + 1;
if ((Bits = rDBits[DistNumber]) > 0) {
Distance += bstream.readBits(Bits);
}
if (Distance >= 0x2000) {
Length++;
if (Distance >= 0x40000) {
Length++;
}
}
lastLength = Length;
lastDist = rOldDist[oldDistPtr++ & 3] = Distance;
RarCopyString(Length, Distance);
continue;
}
if (num == 269) {
RarReadTables20(bstream);
RarUpdateProgress();
continue;
}
if (num == 256) {
lastDist = rOldDist[oldDistPtr++ & 3] = lastDist;
RarCopyString(lastLength, lastDist);
continue;
}
if (num < 261) {
const Distance = rOldDist[(oldDistPtr - (num - 256)) & 3];
const LengthNumber = RarDecodeNumber(bstream, RD);
let Length = rLDecode[LengthNumber] +2;
if ((Bits = rLBits[LengthNumber]) > 0) {
Length += bstream.readBits(Bits);
}
if (Distance >= 0x101) {
Length++;
if (Distance >= 0x2000) {
Length++
if (Distance >= 0x40000) {
Length++;
}
}
}
lastLength = Length;
lastDist = rOldDist[oldDistPtr++ & 3] = Distance;
RarCopyString(Length, Distance);
continue;
}
if (num < 270) {
let Distance = rSDDecode[num -= 261] + 1;
if ((Bits = rSDBits[num]) > 0) {
Distance += bstream.readBits(Bits);
}
lastLength = 2;
lastDist = rOldDist[oldDistPtr++ & 3] = Distance;
RarCopyString(2, Distance);
continue;
}
}
RarUpdateProgress();
}
function RarUpdateProgress() {
const change = rBuffer.ptr - currentBytesUnarchivedInFile;
currentBytesUnarchivedInFile = rBuffer.ptr;
currentBytesUnarchived += change;
postProgress();
}
const rNC20 = 298;
const rDC20 = 48;
const rRC20 = 28;
const rBC20 = 19;
const rMC20 = 257;
const UnpOldTable20 = new Array(rMC20 * 4);
// TODO: This function should return a boolean value, see unpack20.cpp.
function RarReadTables20(bstream) {
const BitLength = new Array(rBC20);
const Table = new Array(rMC20 * 4);
let TableSize;
let N;
let I;
const AudioBlock = bstream.readBits(1);
if (!bstream.readBits(1)) {
for (let i = UnpOldTable20.length; i--;) {
UnpOldTable20[i] = 0;
}
}
TableSize = rNC20 + rDC20 + rRC20;
for (I = 0; I < rBC20; I++) {
BitLength[I] = bstream.readBits(4);
}
RarMakeDecodeTables(BitLength, 0, BD, rBC20);
I = 0;
while (I < TableSize) {
const num = RarDecodeNumber(bstream, BD);
if (num < 16) {
Table[I] = num + UnpOldTable20[I] & 0xf;
I++;
} else if (num == 16) {
N = bstream.readBits(2) + 3;
while (N-- > 0 && I < TableSize) {
Table[I] = Table[I - 1];
I++;
}
} else {
if (num == 17) {
N = bstream.readBits(3) + 3;
} else {
N = bstream.readBits(7) + 11;
}
while (N-- > 0 && I < TableSize) {
Table[I++] = 0;
}
}
}
RarMakeDecodeTables(Table, 0, LD, rNC20);
RarMakeDecodeTables(Table, rNC20, DD, rDC20);
RarMakeDecodeTables(Table, rNC20 + rDC20, RD, rRC20);
for (let i = UnpOldTable20.length; i--;) {
UnpOldTable20[i] = Table[i];
}
}
let lowDistRepCount = 0;
let prevLowDist = 0;
let rOldDist = [0,0,0,0];
let lastDist;
let lastLength;
// ============================================================================================== //
// Unpack code specific to RarVM
const VM = new RarVM();
/**
* Filters code, one entry per filter.
* @type {Array<UnpackFilter>}
*/
let Filters = [];
/**
* Filters stack, several entrances of same filter are possible.
* @type {Array<UnpackFilter>}
*/
let PrgStack = [];
/**
* Lengths of preceding blocks, one length per filter. Used to reduce
* size required to write block length if lengths are repeating.
* @type {Array<number>}
*/
let OldFilterLengths = [];
let LastFilter = 0;
function InitFilters() {
OldFilterLengths = [];
LastFilter = 0;
Filters = [];
PrgStack = [];
}
/**
* @param {number} firstByte The first byte (flags).
* @param {Uint8Array} vmCode An array of bytes.
*/
function RarAddVMCode(firstByte, vmCode) {
VM.init();
const bstream = new bitjs.io.BitStream(vmCode.buffer, true /* rtl */);
let filtPos;
if (firstByte & 0x80) {
filtPos = RarVM.readData(bstream);
if (filtPos == 0) {
InitFilters();
} else {
filtPos--;
}
} else {
filtPos = LastFilter;
}
if (filtPos > Filters.length || filtPos > OldFilterLengths.length) {
return false;
}
LastFilter = filtPos;
const newFilter = (filtPos == Filters.length);
// new filter for PrgStack
const stackFilter = new UnpackFilter();
let filter = null;
// new filter code, never used before since VM reset
if (newFilter) {
// too many different filters, corrupt archive
if (filtPos > 1024) {
return false;
}
filter = new UnpackFilter();
Filters.push(filter);
stackFilter.ParentFilter = (Filters.length - 1);
OldFilterLengths.push(0); // OldFilterLengths.Add(1)
filter.ExecCount = 0;
} else { // filter was used in the past
filter = Filters[filtPos];
stackFilter.ParentFilter = filtPos;
filter.ExecCount++;
}
let emptyCount = 0;
for (let i = 0; i < PrgStack.length; ++i) {
PrgStack[i - emptyCount] = PrgStack[i];
if (PrgStack[i] == null) {
emptyCount++;
}
if (emptyCount > 0) {
PrgStack[i] = null;
}
}
if (emptyCount == 0) {
PrgStack.push(null); //PrgStack.Add(1);
emptyCount = 1;
}
const stackPos = PrgStack.length - emptyCount;
PrgStack[stackPos] = stackFilter;
stackFilter.ExecCount = filter.ExecCount;
let blockStart = RarVM.readData(bstream);
if (firstByte & 0x40) {
blockStart += 258;
}
stackFilter.BlockStart = (blockStart + rBuffer.ptr) & MAXWINMASK;
if (firstByte & 0x20) {
stackFilter.BlockLength = RarVM.readData(bstream);
} else {
stackFilter.BlockLength = filtPos < OldFilterLengths.length
? OldFilterLengths[filtPos]
: 0;
}
stackFilter.NextWindow = (wBuffer.ptr != rBuffer.ptr) &&
(((wBuffer.ptr - rBuffer.ptr) & MAXWINMASK) <= blockStart);
OldFilterLengths[filtPos] = stackFilter.BlockLength;
for (let i = 0; i < 7; ++i) {
stackFilter.Prg.InitR[i] = 0;
}
stackFilter.Prg.InitR[3] = VM_GLOBALMEMADDR;
stackFilter.Prg.InitR[4] = stackFilter.BlockLength;
stackFilter.Prg.InitR[5] = stackFilter.ExecCount;
// set registers to optional parameters if any
if (firstByte & 0x10) {
const initMask = bstream.readBits(7);
for (let i = 0; i < 7; ++i) {
if (initMask & (1 << i)) {
stackFilter.Prg.InitR[i] = RarVM.readData(bstream);
}
}
}
if (newFilter) {
const vmCodeSize = RarVM.readData(bstream);
if (vmCodeSize >= 0x10000 || vmCodeSize == 0) {
return false;
}
const vmCode = new Uint8Array(vmCodeSize);
for (let i = 0; i < vmCodeSize; ++i) {
//if (Inp.Overflow(3))
// return(false);
vmCode[i] = bstream.readBits(8);
}
VM.prepare(vmCode, filter.Prg);
}
stackFilter.Prg.Cmd = filter.Prg.Cmd;
stackFilter.Prg.AltCmd = filter.Prg.Cmd;
const staticDataSize = filter.Prg.StaticData.length;
if (staticDataSize > 0 && staticDataSize < VM_GLOBALMEMSIZE) {
// read statically defined data contained in DB commands
for (let i = 0; i < staticDataSize; ++i) {
stackFilter.Prg.StaticData[i] = filter.Prg.StaticData[i];
}
}
if (stackFilter.Prg.GlobalData.length < VM_FIXEDGLOBALSIZE) {
stackFilter.Prg.GlobalData = new Uint8Array(VM_FIXEDGLOBALSIZE);
}
const globalData = stackFilter.Prg.GlobalData;
for (let i = 0; i < 7; ++i) {
VM.setLowEndianValue(globalData, stackFilter.Prg.InitR[i], i * 4);
}
VM.setLowEndianValue(globalData, stackFilter.BlockLength, 0x1c);
VM.setLowEndianValue(globalData, 0, 0x20);
VM.setLowEndianValue(globalData, stackFilter.ExecCount, 0x2c);
for (let i = 0; i < 16; ++i) {
globalData[0x30 + i] = 0;
}
// put data block passed as parameter if any
if (firstByte & 8) {
//if (Inp.Overflow(3))
// return(false);
const dataSize = RarVM.readData(bstream);
if (dataSize > (VM_GLOBALMEMSIZE - VM_FIXEDGLOBALSIZE)) {
return false;
}
const curSize = stackFilter.Prg.GlobalData.length;
if (curSize < dataSize + VM_FIXEDGLOBALSIZE) {
// Resize global data and update the stackFilter and local variable.
const numBytesToAdd = dataSize + VM_FIXEDGLOBALSIZE - curSize;
const newGlobalData = new Uint8Array(globalData.length + numBytesToAdd);
newGlobalData.set(globalData);
stackFilter.Prg.GlobalData = newGlobalData;
globalData = newGlobalData;
}
//byte *GlobalData=&StackFilter->Prg.GlobalData[VM_FIXEDGLOBALSIZE];
for (let i = 0; i < dataSize; ++i) {
//if (Inp.Overflow(3))
// return(false);
globalData[VM_FIXEDGLOBALSIZE + i] = bstream.readBits(8);
}
}
return true;
}
/**
* @param {!bitjs.io.BitStream} bstream
*/
function RarReadVMCode(bstream) {
const firstByte = bstream.readBits(8);
let length = (firstByte & 7) + 1;
if (length == 7) {
length = bstream.readBits(8) + 7;
} else if (length == 8) {
length = bstream.readBits(16);
}
// Read all bytes of VM code into an array.
const vmCode = new Uint8Array(length);
for (let i = 0; i < length; i++) {
// Do something here with checking readbuf.
vmCode[i] = bstream.readBits(8);
}
return RarAddVMCode(firstByte, vmCode);
}
/**
* Unpacks the bit stream into rBuffer using the Unpack29 algorithm.
* @param {bitjs.io.BitStream} bstream
* @param {boolean} Solid
*/
function Unpack29(bstream, Solid) {
// lazy initialize rDDecode and rDBits
const DDecode = new Array(rDC);
const DBits = new Array(rDC);
let Dist = 0;
let BitLength = 0;
let Slot = 0;
for (let I = 0; I < rDBitLengthCounts.length; I++,BitLength++) {
for (let J = 0; J < rDBitLengthCounts[I]; J++,Slot++,Dist+=(1<<BitLength)) {
DDecode[Slot]=Dist;
DBits[Slot]=BitLength;
}
}
let Bits;
//tablesRead = false;
rOldDist = [0,0,0,0]
lastDist = 0;
lastLength = 0;
for (let i = UnpOldTable.length; i--;) {
UnpOldTable[i] = 0;
}
// read in Huffman tables
RarReadTables(bstream);
while (true) {
let num = RarDecodeNumber(bstream, LD);
if (num < 256) {
rBuffer.insertByte(num);
continue;
}
if (num >= 271) {
let Length = rLDecode[num -= 271] + 3;
if ((Bits = rLBits[num]) > 0) {
Length += bstream.readBits(Bits);
}
const DistNumber = RarDecodeNumber(bstream, DD);
let Distance = DDecode[DistNumber] + 1;
if ((Bits = DBits[DistNumber]) > 0) {
if (DistNumber > 9) {
if (Bits > 4) {
Distance += ((bstream.getBits() >>> (20 - Bits)) << 4);
bstream.readBits(Bits - 4);
//todo: check this
}
if (lowDistRepCount > 0) {
lowDistRepCount--;
Distance += prevLowDist;
} else {
const LowDist = RarDecodeNumber(bstream, LDD);
if (LowDist == 16) {
lowDistRepCount = rLOW_DIST_REP_COUNT - 1;
Distance += prevLowDist;
} else {
Distance += LowDist;
prevLowDist = LowDist;
}
}
} else {
Distance += bstream.readBits(Bits);
}
}
if (Distance >= 0x2000) {
Length++;
if (Distance >= 0x40000) {
Length++;
}
}
RarInsertOldDist(Distance);
RarInsertLastMatch(Length, Distance);
RarCopyString(Length, Distance);
continue;
}
if (num == 256) {
if (!RarReadEndOfBlock(bstream)) {
break;
}
continue;
}
if (num == 257) {
if (!RarReadVMCode(bstream)) {
break;
}
continue;
}
if (num == 258) {
if (lastLength != 0) {
RarCopyString(lastLength, lastDist);
}
continue;
}
if (num < 263) {
const DistNum = num - 259;
const Distance = rOldDist[DistNum];
for (let I = DistNum; I > 0; I--) {
rOldDist[I] = rOldDist[I-1];
}
rOldDist[0] = Distance;
const LengthNumber = RarDecodeNumber(bstream, RD);
let Length = rLDecode[LengthNumber] + 2;
if ((Bits = rLBits[LengthNumber]) > 0) {
Length += bstream.readBits(Bits);
}
RarInsertLastMatch(Length, Distance);
RarCopyString(Length, Distance);
continue;
}
if (num < 272) {
let Distance = rSDDecode[num -= 263] + 1;
if ((Bits = rSDBits[num]) > 0) {
Distance += bstream.readBits(Bits);
}
RarInsertOldDist(Distance);
RarInsertLastMatch(2, Distance);
RarCopyString(2, Distance);
continue;
}
} // while (true)
RarUpdateProgress();
RarWriteBuf();
}
/**
* Does stuff to the current byte buffer (rBuffer) based on
* the filters loaded into the RarVM and writes out to wBuffer.
*/
function RarWriteBuf() {
let writeSize = (rBuffer.ptr & MAXWINMASK);
for (let i = 0; i < PrgStack.length; ++i) {
const flt = PrgStack[i];
if (flt == null) {
continue;
}
if (flt.NextWindow) {
flt.NextWindow = false;
continue;
}
const blockStart = flt.BlockStart;
const blockLength = flt.BlockLength;
// WrittenBorder = wBuffer.ptr
if (((blockStart - wBuffer.ptr) & MAXWINMASK) < writeSize) {
if (wBuffer.ptr != blockStart) {
// Copy blockStart bytes from rBuffer into wBuffer.
RarWriteArea(wBuffer.ptr, blockStart);
writeSize = (rBuffer.ptr - wBuffer.ptr) & MAXWINMASK;
}
if (blockLength <= writeSize) {
const blockEnd = (blockStart + blockLength) & MAXWINMASK;
if (blockStart < blockEnd || blockEnd == 0) {
VM.setMemory(0, rBuffer.data.subarray(blockStart, blockStart + blockLength), blockLength);
} else {
const firstPartLength = MAXWINSIZE - blockStart;
VM.setMemory(0, rBuffer.data.subarray(blockStart, blockStart + firstPartLength), firstPartLength);
VM.setMemory(firstPartLength, rBuffer.data, blockEnd);
}
const parentPrg = Filters[flt.ParentFilter].Prg;
const prg = flt.Prg;
if (parentPrg.GlobalData.length > VM_FIXEDGLOBALSIZE) {
// Copy global data from previous script execution if any.
prg.GlobalData = new Uint8Array(parentPrg.GlobalData);
}
RarExecuteCode(prg);
if (prg.GlobalData.length > VM_FIXEDGLOBALSIZE) {
// Save global data for next script execution.
const globalDataLen = prg.GlobalData.length;
if (parentPrg.GlobalData.length < globalDataLen) {
parentPrg.GlobalData = new Uint8Array(globalDataLen);
}
parentPrg.GlobalData.set(
this.mem_.subarray(VM_FIXEDGLOBALSIZE, VM_FIXEDGLOBALSIZE + globalDataLen),
VM_FIXEDGLOBALSIZE);
} else {
parentPrg.GlobalData = new Uint8Array(0);
}
let filteredData = prg.FilteredData;
PrgStack[i] = null;
while (i + 1 < PrgStack.length) {
const nextFilter = PrgStack[i + 1];
if (nextFilter == null || nextFilter.BlockStart != blockStart ||
nextFilter.BlockLength != filteredData.length || nextFilter.NextWindow) {
break;
}
// Apply several filters to same data block.
VM.setMemory(0, filteredData, filteredData.length);
const innerParentPrg = Filters[nextFilter.ParentFilter].Prg;
const nextPrg = nextFilter.Prg;
const globalDataLen = innerParentPrg.GlobalData.length;
if (globalDataLen > VM_FIXEDGLOBALSIZE) {
// Copy global data from previous script execution if any.
nextPrg.GlobalData = new Uint8Array(globalDataLen);
nextPrg.GlobalData.set(innerParentPrg.GlobalData.subarray(VM_FIXEDGLOBALSIZE, VM_FIXEDGLOBALSIZE + globalDataLen), VM_FIXEDGLOBALSIZE);
}
RarExecuteCode(nextPrg);
if (nextPrg.GlobalData.length > VM_GLOBALMEMSIZE) {
// Save global data for next script execution.
const globalDataLen = nextPrg.GlobalData.length;
if (innerParentPrg.GlobalData.length < globalDataLen) {
innerParentPrg.GlobalData = new Uint8Array(globalDataLen);
}
innerParentPrg.GlobalData.set(
this.mem_.subarray(VM_FIXEDGLOBALSIZE, VM_FIXEDGLOBALSIZE + globalDataLen),
VM_FIXEDGLOBALSIZE);
} else {
innerParentPrg.GlobalData = new Uint8Array(0);
}
filteredData = nextPrg.FilteredData;
i++;
PrgStack[i] = null;
} // while (i + 1 < PrgStack.length)
for (let j = 0; j < filteredData.length; ++j) {
wBuffer.insertByte(filteredData[j]);
}
writeSize = (rBuffer.ptr - wBuffer.ptr) & MAXWINMASK;
} // if (blockLength <= writeSize)
else {
for (let j = i; j < PrgStack.length; ++j) {
const theFlt = PrgStack[j];
if (theFlt != null && theFlt.NextWindow) {
theFlt.NextWindow = false;
}
}
return;
}
} // if (((blockStart - wBuffer.ptr) & MAXWINMASK) < writeSize)
} // for (let i = 0; i < PrgStack.length; ++i)
// Write any remaining bytes from rBuffer to wBuffer;
RarWriteArea(wBuffer.ptr, rBuffer.ptr);
// Now that the filtered buffer has been written, swap it back to rBuffer.
rBuffer = wBuffer;
}
/**
* Copy bytes from rBuffer to wBuffer.
* @param {number} startPtr The starting point to copy from rBuffer.
* @param {number} endPtr The ending point to copy from rBuffer.
*/
function RarWriteArea(startPtr, endPtr) {
if (endPtr < startPtr) {
console.error('endPtr < startPtr, endPtr=' + endPtr + ', startPtr=' + startPtr);
// RarWriteData(startPtr, -(int)StartPtr & MAXWINMASK);
// RarWriteData(0, endPtr);
return;
} else if (startPtr < endPtr) {
RarWriteData(startPtr, endPtr - startPtr);
}
}
/**
* Writes bytes into wBuffer from rBuffer.
* @param {number} offset The starting point to copy bytes from rBuffer.
* @param {number} numBytes The number of bytes to copy.
*/
function RarWriteData(offset, numBytes) {
if (wBuffer.ptr >= rBuffer.data.length) {
return;
}
const leftToWrite = rBuffer.data.length - wBuffer.ptr;
if (numBytes > leftToWrite) {
numBytes = leftToWrite;
}
for (let i = 0; i < numBytes; ++i) {
wBuffer.insertByte(rBuffer.data[offset + i]);
}
}
/**
* @param {VM_PreparedProgram} prg
*/
function RarExecuteCode(prg)
{
if (prg.GlobalData.length > 0) {
const writtenFileSize = wBuffer.ptr;
prg.InitR[6] = writtenFileSize;
VM.setLowEndianValue(prg.GlobalData, writtenFileSize, 0x24);
VM.setLowEndianValue(prg.GlobalData, (writtenFileSize >>> 32) >> 0, 0x28);
VM.execute(prg);
}
}
function RarReadEndOfBlock(bstream) {
RarUpdateProgress();
let NewTable = false;
let NewFile = false;
if (bstream.readBits(1)) {
NewTable = true;
} else {
NewFile = true;
NewTable = !!bstream.readBits(1);
}
//tablesRead = !NewTable;
return !(NewFile || NewTable && !RarReadTables(bstream));
}
function RarInsertLastMatch(length, distance) {
lastDist = distance;
lastLength = length;
}
function RarInsertOldDist(distance) {
rOldDist.splice(3,1);
rOldDist.splice(0,0,distance);
}
/**
* Copies len bytes from distance bytes ago in the buffer to the end of the
* current byte buffer.
* @param {number} length How many bytes to copy.
* @param {number} distance How far back in the buffer from the current write
* pointer to start copying from.
*/
function RarCopyString(len, distance) {
let srcPtr = rBuffer.ptr - distance;
// If we need to go back to previous buffers, then seek back.
if (srcPtr < 0) {
let l = rOldBuffers.length;
while (srcPtr < 0) {
srcPtr = rOldBuffers[--l].data.length + srcPtr;
}
// TODO: lets hope that it never needs to read across buffer boundaries
while (len--) {
rBuffer.insertByte(rOldBuffers[l].data[srcPtr++]);
}
}
if (len > distance) {
while (len--) {
rBuffer.insertByte(rBuffer.data[srcPtr++]);
}
} else {
rBuffer.insertBytes(rBuffer.data.subarray(srcPtr, srcPtr + len));
}
}
/**
* @param {RarLocalFile} v
*/
function unpack(v) {
// TODO: implement what happens when unpVer is < 15
const Ver = v.header.unpVer <= 15 ? 15 : v.header.unpVer;
const Solid = v.header.flags.LHD_SOLID;
const bstream = new bitjs.io.BitStream(v.fileData.buffer, true /* rtl */, v.fileData.byteOffset, v.fileData.byteLength );
rBuffer = new bitjs.io.ByteBuffer(v.header.unpackedSize);
info("Unpacking " + v.filename + " RAR v" + Ver);
switch (Ver) {
case 15: // rar 1.5 compression
Unpack15(bstream, Solid);
break;
case 20: // rar 2.x compression
case 26: // files larger than 2GB
Unpack20(bstream, Solid);
break;
case 29: // rar 3.x compression
case 36: // alternative hash
wBuffer = new bitjs.io.ByteBuffer(rBuffer.data.length);
Unpack29(bstream, Solid);
break;
} // switch(method)
rOldBuffers.push(rBuffer);
// TODO: clear these old buffers when there's over 4MB of history
return rBuffer.data;
}
/**
*/
class RarLocalFile {
/**
* @param {bitjs.io.BitStream} bstream
*/
constructor(bstream) {
this.header = new RarVolumeHeader(bstream);
this.filename = this.header.filename;
if (this.header.headType != FILE_HEAD && this.header.headType != ENDARC_HEAD) {
this.isValid = false;
info("Error! RAR Volume did not include a FILE_HEAD header ");
}
else {
// read in the compressed data
this.fileData = null;
if (this.header.packSize > 0) {
this.fileData = bstream.readBytes(this.header.packSize);
this.isValid = true;
}
}
}
unrar() {
if (!this.header.flags.LHD_SPLIT_BEFORE) {
// unstore file
if (this.header.method == 0x30) {
info("Unstore "+this.filename);
this.isValid = true;
currentBytesUnarchivedInFile += this.fileData.length;
currentBytesUnarchived += this.fileData.length;
// Create a new buffer and copy it over.
const len = this.header.packSize;
const newBuffer = new bitjs.io.ByteBuffer(len);
newBuffer.insertBytes(this.fileData);
this.fileData = newBuffer.data;
} else {
this.isValid = true;
this.fileData = unpack(this);
}
}
}
}
const unrar = function(arrayBuffer) {
currentFilename = "";
currentFileNumber = 0;
currentBytesUnarchivedInFile = 0;
currentBytesUnarchived = 0;
totalUncompressedBytesInArchive = 0;
totalFilesInArchive = 0;
postMessage(new bitjs.archive.UnarchiveStartEvent());
const bstream = new bitjs.io.BitStream(arrayBuffer, false /* rtl */);
const header = new RarVolumeHeader(bstream);
if (header.crc == 0x6152 &&
header.headType == 0x72 &&
header.flags.value == 0x1A21 &&
header.headSize == 7) {
info("Found RAR signature");
const mhead = new RarVolumeHeader(bstream);
if (mhead.headType != MAIN_HEAD) {
info("Error! RAR did not include a MAIN_HEAD header");
}
else {
let localFiles = [];
let localFile = null;
do {
try {
localFile = new RarLocalFile(bstream);
info("RAR localFile isValid=" + localFile.isValid + ", volume packSize=" + localFile.header.packSize);
if (localFile && localFile.isValid && localFile.header.packSize > 0) {
totalUncompressedBytesInArchive += localFile.header.unpackedSize;
localFiles.push(localFile);
} else if (localFile.header.packSize == 0 && localFile.header.unpackedSize == 0) {
localFile.isValid = true;
}
} catch(err) {
break;
}
//info("bstream" + bstream.bytePtr+"/"+bstream.bytes.length);
} while (localFile.isValid);
totalFilesInArchive = localFiles.length;
// now we have all information but things are unpacked
localFiles = localFiles.sort((a,b) => a.filename.toLowerCase() > b.filename.toLowerCase() ? 1 : -1);
info(localFiles.map(function(a){return a.filename}).join(', '));
for (let i = 0; i < localFiles.length; ++i) {
const localfile = localFiles[i];
// update progress
currentFilename = localfile.header.filename;
currentBytesUnarchivedInFile = 0;
// actually do the unzipping
localfile.unrar();
if (localfile.isValid) {
postMessage(new bitjs.archive.UnarchiveExtractEvent(localfile));
postProgress();
}
}
postProgress();
}
}
else {
err("Invalid RAR file");
}
postMessage(new bitjs.archive.UnarchiveFinishEvent());
};
// event.data.file has the ArrayBuffer.
onmessage = function(event) {
const ab = event.data.file;
unrar(ab, true);
};