92 lines
3.4 KiB
Plaintext
92 lines
3.4 KiB
Plaintext
|
const int char_width = 8;
|
||
|
const int char_height = 13;
|
||
|
const int char_count = 95;
|
||
|
const int char_pixels = char_width*char_height;
|
||
|
const float2 char_dim = float2(char_width, char_height);
|
||
|
const float2 font_scale = float2(1.0/float(char_width)/float(char_count), 1.0/float(char_height));
|
||
|
|
||
|
void main()
|
||
|
{
|
||
|
float2 char_pos = floor(GetCoordinates()*GetResolution()/char_dim);
|
||
|
float2 pixel_offset = floor(GetCoordinates()*GetResolution()) - char_pos*char_dim;
|
||
|
|
||
|
// just a big number
|
||
|
float mindiff = float(char_width*char_height) * 100.0;
|
||
|
|
||
|
float minc = 0.0;
|
||
|
float4 mina = float4(0.0, 0.0, 0.0, 0.0);
|
||
|
float4 minb = float4(0.0, 0.0, 0.0, 0.0);
|
||
|
|
||
|
for (int i=0; i<char_count; i++)
|
||
|
{
|
||
|
float4 ff = float4(0.0, 0.0, 0.0, 0.0);
|
||
|
float4 f = float4(0.0, 0.0, 0.0, 0.0);
|
||
|
float4 ft = float4(0.0, 0.0, 0.0, 0.0);
|
||
|
float4 t = float4(0.0, 0.0, 0.0, 0.0);
|
||
|
float4 tt = float4(0.0, 0.0, 0.0, 0.0);
|
||
|
|
||
|
for (int x=0; x<char_width; x++)
|
||
|
{
|
||
|
for (int y=0; y<char_height; y++)
|
||
|
{
|
||
|
float2 tex_pos = char_pos*char_dim + float2(x,y) + 0.5;
|
||
|
float4 tex = SampleLocation(tex_pos * GetInvResolution());
|
||
|
|
||
|
float2 font_pos = float2(x+i*char_width, y) + 0.5;
|
||
|
float4 font = SampleFontLocation(font_pos * font_scale);
|
||
|
|
||
|
// generates sum of texture and font and their squares
|
||
|
ff += font*font;
|
||
|
f += font;
|
||
|
ft += font*tex;
|
||
|
t += tex;
|
||
|
tt += tex*tex;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The next lines are a bit harder, hf :-)
|
||
|
|
||
|
// The idea is to find the perfect char with the perfect background color and the perfect font color.
|
||
|
// As this is an equation with three unknowns, we can't just try all chars and color combinations.
|
||
|
|
||
|
// As criterion how "perfect" the selection is, we compare the "mean squared error" of the resulted colors of all chars.
|
||
|
// So, now the big issue: how to calculate the MSE without knowing the two colors ...
|
||
|
|
||
|
// In the next steps, "a" is the font color, "b" is the background color, "f" is the font value at this pixel, "t" is the texture value
|
||
|
|
||
|
// So the square error of one pixel is:
|
||
|
// e = ( t - a⋅f - b⋅(1-f) ) ^ 2
|
||
|
|
||
|
// In longer:
|
||
|
// e = a^2⋅f^2 - 2⋅a⋅b⋅f^2 + 2⋅a⋅b⋅f - 2⋅a⋅f⋅t + b^2⋅f^2 - 2⋅b^2⋅f + b^2 + 2⋅b⋅f⋅t - 2⋅b⋅t + t^2
|
||
|
|
||
|
// The sum of all errors is: (as shortcut, ff,f,ft,t,tt are now the sums like declared above, sum(1) is the count of pixels)
|
||
|
// sum(e) = a^2⋅ff - 2⋅a^2⋅ff + 2⋅a⋅b⋅f - 2⋅a⋅ft + b^2⋅ff - 2⋅b^2⋅f + b^2⋅sum(1) + 2⋅b⋅ft - 2⋅b⋅t + tt
|
||
|
|
||
|
// To find the minimum, we have to derive this by "a" and "b":
|
||
|
// d/da sum(e) = 2⋅a⋅ff + 2⋅b⋅f - 2⋅b⋅ff - 2⋅ft
|
||
|
// d/db sum(e) = 2⋅a⋅f - 2⋅a⋅ff - 4⋅b⋅f + 2⋅b⋅ff + 2⋅b⋅sum(1) + 2⋅ft - 2⋅t
|
||
|
|
||
|
// So, both equations must be zero at minimum and there is only one solution.
|
||
|
|
||
|
float4 a = (f*ft - ff*t + f*t - ft*float(char_pixels)) / (f*f - ff*float(char_pixels));
|
||
|
float4 b = (f*ft - ff*t) / (f*f - ff*float(char_pixels));
|
||
|
|
||
|
float4 diff = a*a*ff + 2.0*a*b*f - 2.0*a*b*ff - 2.0*a*ft + b*b *(-2.0*f + ff + float(char_pixels)) + 2.0*b*ft - 2.0*b*t + tt;
|
||
|
float diff_f = dot(diff, float4(1.0, 1.0, 1.0, 1.0));
|
||
|
|
||
|
if (diff_f < mindiff)
|
||
|
{
|
||
|
mindiff = diff_f;
|
||
|
minc = float(i);
|
||
|
mina = a;
|
||
|
minb = b;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
float2 font_pos_res = float2(minc * float(char_width), 0.0) + pixel_offset + 0.5;
|
||
|
|
||
|
float4 col = SampleFontLocation(font_pos_res * font_scale);
|
||
|
SetOutput(mina * col + minb * (float4(1.0,1.0,1.0,1.0) - col));
|
||
|
}
|